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Abstract

This research work illustrates the details of a methodologi-
cal approach to the design of homogeneous neuro-controllers
for self-assembly in physical autonomous robots in which no
assumptions are made concerning how agents allocate roles.
Artificial evolution is used to set the parameters of a dynam-
ical neural network that when ported on two physical robots
allows them to coordinate their actions in order to decide who
will grip whom. The neural network directly controls the
state of all the actuators. To the best of our knowledge, this
work is the first example in which physical robots manage to
self-assemble without relying on a priori injected morpholog-
ical or behavioural heterogeneities. The results shed a light on
the minimal requirements necessary to achieve self-assembly
in autonomous robots.

Introduction
According to Whitesides and Grzybowski (2002), self-
assembly is defined as “the autonomous organisation of
components into patterns or structures without human inter-
vention”. Nature provides many examples of animals form-
ing collective structures by connecting themselves to one an-
other. Individuals of various ant, bee and wasp species self-
assemble and manage to build complex structures such as
bivouacs, ladders, etc. Self-assembly in social insects typ-
ically happens in order to accomplish some function (e.g.,
defence, object transport, passage formation, etc.; see An-
derson et al., 2002). Ants of the speciesŒcophylla longin-
oda can form chains composed of their own bodies which
are used to pull leaves together to form a nest, or to bridge a
passage between branches in a tree (Hölldobler and Wilson,
1978). Self-assembly is also widely observed at the molecu-
lar level (e.g., DNA molecules). Although ubiquitous in na-
ture, self-assembly remains in general a phenomenon whose
operational principles are not easy to grasp, both in non-
living and living organisms, at any scale. This is because “it
is impractical to change many of the parameters that deter-
mine the behaviour of the system components” (see White-
sides and Grzybowski, 2002). However, self-assembly is
particularly appealing to various scientific disciplines.For
example, understanding the mechanisms of self-assembly in

the cell may provide further insights into the emergence of
life starting from chemical reactions. From an engineering
point of view, understanding self-assembly may inspire the
design of artificial self-assembling components. The appli-
cation of such systems can potentially go beyond research in
laboratories, space applications being the most obvious chal-
lenge (e.g., multi-robot planetary exploration and on-orbit
self-assembly, see Izzo and Pettazzi, 2007).

Building artificial models that capture the main proper-
ties of natural phenomena can provide the means to formu-
late and test hypotheses concerning the underlying mecha-
nisms of the observed phenomena (see Webb, 2000). Sev-
eral examples of robotic platforms in the literature consist
of connecting modules1. Among the various autonomous
self-assembling systems that have been proposed in the lit-
erature, the work done by Groß et al. (2006) using the
robots calleds-bot is particularly relevant to the subject of
our study. Groß et al. (2006) presented experiments improv-
ing the state of the art in self-assembling robots concern-
ing mainly the number of robots involved in self-assembly,
the generality and reliability of the controllers and the as-
sembly speed. A significant contribution of Groß et al.
work is in the design of distributed control mechanisms
for self-assembly relying only on local perception. In par-
ticular, self-assembly is accomplished with a modular ap-
proach in which some modules are evolved and others hand-
crafted. The approach is based upon a signalling system
which makes use of colours. For example, the decision
concerning which robot makes the action of gripping (i.e.,
thes-bot-gripper) and which one is gripped (i.e., thes-bot-
grippee) is made through the emission of colour signals, ac-
cording to which the robots emitting blue light are playing
the role ofs-bot-grippersand those emitting red light the
role of s-bot-grippees. Thus, it is the heterogeneity among
the robots with respect to the colour displayed, a priori in-
troduced by the experimenter, that triggers the self-assembly
process. That is, a single robot “born” red among several

1The reader can find comprehensive reviews of the work on au-
tonomous self-assembling systems in (Yim et al., 2002; Großand
Dorigo, 2008b; Tuci et al., 2006).
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robots “born” blue is meant to play the role ofs-bot-grippee
while the remainings-bot-grippersare progressively assem-
bling. Once successfully assembled to another robot, each
blue light emitting robot is programmed to turn off the blue
LEDs and to turn on the red ones. The switch from blue
to red light indicates to the yet non-assembled robots the
“metamorphosis” of a robot froms-bot-gripper to s-bot-
grippee. This system is therefore based on the presence of a
behavioural or morphological heterogeneity. In other words,
it requires either the presence of an object lit up in red or
the presence of a robot not sharing the controller of the oth-
ers, which is forced to be immobile and to signal with a red
colour. O’Grady et al. (2005) bypassed this requirement by
handcrafting a decision-making mechanism based on a prob-
abilistic transition between states. More specifically, the al-
location of roles (which robot lights up red and triggers the
process) depends solely on a stochastic process.

The research works presented in (Groß et al., 2006) and
in (O’Grady et al., 2005) showed how assembled structures
can overcome limitations of the single robots, for instance
in transporting a heavy object or in navigating on rough ter-
rain. However, the modularised control architecture used
in these works to allow the robots to self-assemble is based
on a set of a priori assumptions concerning the specifica-
tion of the environmental/behavioural conditions that trig-
ger the self-assembling process. For example, (a) the ob-
jects that can be grasped must be red, and those that should
not be grasped must be blue; (b) the action of grasping is
carried out only if all the “grasping requirements” are ful-
filled (among others, a combination of conditions concern-
ing the distance and relative orientation between the robots,
see Groß et al., 2006, for details). If the experimenter could
always know in advance in what type of world the agents
will be located, assumptions such as those concerning the
nature of the object to be grasped would not represent a lim-
itation with respect to the domain of action of the robotic
system. However, since it is desirable to have agents that
can potentially adapt to variable circumstances or conditions
that are partially or totally unknown to the experimenter, it
follows that the efficiency of autonomous robots should be
estimated also with respect to their capacity to cope with
“unpredictable” events (e.g., environmental variability, par-
tial hardware failure, etc.). For example, failure to emit or
perceive red light for robots guided by the controllers pre-
sented above would significantly hinder the accomplishment
of the assembly task.

In this work we aim at designing control structures by
which the self-assembly mechanisms do not rely on a pri-
ori designer-specified morphological or behavioural differ-
ences between the robots, and the individual behaviours are
not triggered by a priori designer-specified agents’ percep-
tual cues. To accomplish our objective we exploit the prop-
erties of a particular type of design method referred to as
Evolutionary Robotics (ER). ER is a methodological tool to

automate the design of robots’ controllers based on the use
of artificial evolution to find sets of parameters for artifi-
cial neural networks that guide the robots to the accomplish-
ment of their task (Nolfi and Floreano, 2000). With respect
to other design methods, ER provides the methodological
tools to generate control structures for artificial agents such
as autonomous robots, in a relatively prejudice-free fash-
ion. For example, ER does not require the designer to make
strong assumptions concerning what behavioural and com-
munication mechanisms are needed by the robots. The ex-
perimenter defines the characteristics of a social context in
which robots are required to cooperate. The agents’ mecha-
nisms for solitary and social behaviour are determined by an
evolutionary process that favours (through selection) those
solutions which improve the fitness (i.e., a measure of an
agent’s or group’s ability to accomplish its task).

In this work, we study self-assembly in a setup where the
robots interact and eventually differentiate by allocating dis-
tinct roles (i.e.,s-bot-gripper versuss-bot-grippee). In par-
ticular, two identical robots, placed in a boundless arena at
25/30 cm from each other with random orientations, are re-
quired to approach each other and to self-assemble; that is,a
robot should physically connect to the other one via a grip-
per. Instead of a priori defining the mechanisms leading to
role allocation and self-assembly, we let behavioural hetero-
geneity emerge from the interaction among the system’s ho-
mogeneous components. We show that an integrated (i.e.,
non-modularised) dynamical neural network in direct con-
trol of all the actuators of the robots can successfully tackle
real-world tasks requiring fine-grained sensory-motor coor-
dination, such as self-assembly. We show with physical
robots that coordination and cooperation in self-assembly
do not require explicit signalling of internal states, as as-
sumed, for example, by (Groß et al., 2006). Coordination
and role allocation in our system is achieved solely through
minimal sensory information and without explicit commu-
nication. Groß and Dorigo (2008a) have reached a similar
conclusion in a cooperative transport task with simulated
robots. Also, due to the nature of the sensory system used,
the robots cannot sense the orientation of their group-mates.
In this sense, our approach is similar to (and largely inspired
from) the one of (Quinn, 2001; Quinn et al., 2003), where
role allocation (leader-follower) is achieved solely through
infrared sensors. In addition, we also show that the evolved
mechanisms are as effective as the modular and hand-coded
ones described in (Groß et al., 2006; O’Grady et al., 2005)
when controlling two physical robots.

Simulated and Real S-bot
An s-botis a mobile autonomous robot equipped with many
sensors useful for the perception of the surrounding environ-
ment or for proprioception, a differential drive system, and
a gripper by which it can grasp various objects or another
s-bot(see Figure 1a, and Mondada et al., 2004, for further
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details on the robot). The main body is a cylindrical turret
with a diameter of 11.6 cm, which can be actively rotated
with respect to the chassis.

In this work, to allow robots to perceive each other,
we make use of the omni-directional camera. The image
recorded by the camera is filtered in order to return the dis-
tance of the closest red, green, or blue blob in each of the
eight 45◦ sectors. Each sector is referred to asCi with
i ∈ [1, 8]. Thus, ans-bot to be perceived by the camera
must light itself up in one of the three colours using the
LEDs mounted on its turret. Notice that the camera can
clearly perceive coloured blobs up to a distance of approxi-
mately 50 cm, but the precision above 30 cm is rather low.
Moreover, the precision with which the distance of coloured
blobs is detected varies with respect to the colour of the
perceived object. We also make use of the optical barrier
which is a hardware component composed of two LEDs and
a light sensor mounted on the gripper (see Figure 1b). By
post-processing the readings of the optical barrier we extract
valuable information concerning the status of the gripper and
about the presence of an object between the gripper claws.
More specifically, the post-processing of the optical barrier
readings defines the status of two virtual sensors: a) theGS
sensor, set to 1 if the optical barrier indicates that there is an
object in between the gripper claws, 0 otherwise; b) theGG
sensor, set to 1 anytime a robot has gripped an object, 0 oth-
erwise. We also make use of theGAsensor, which monitors
the gripper aperture. The readings of theGA sensor range
from 0 when the gripper is completely closed to 1 when the
gripper is completely open.

The controllers are evolved in a simulation environment
which models some of the hardware characteristics of the
reals-bots. The simulator used is based on a specialized 2D
dynamics engine (see Christensen, 2005). In order to evolve
controllers that transfer to real hardware, we overcome the
limitations of the simulator by following the approach pro-
posed in (Jakobi, 1997); motion is simulated with sufficient
accuracy, collisions are not. Self-assembly relies on rather
delicate physical interactions between robots that are inte-

Colour LEDs
Camera

Gripper

(a) (b)

Figure 1: (a) The s-bot. (b) The gripper and sensors of the
optical barrier.
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Figure 2: Neural network architecture: only the efferent con-
nections of the first node of each layer are drawn. See text
for the meaning of the labels.

gral to the task (e.g., the closing of the gripper around an
object can be seen as a collision). Instead of trying to ac-
curately simulate the collisions, we force the controllersto
minimise them and not to rely on their outcome. In other
words, in case of a collision, the two colliding bodies are
repositioned to their previous positions, and the behaviour
is penalised by the fitness function if the collision can not
be considered the consequence of an accepted grasping ma-
noeuvre. Having taken care of the collisions involved with
gripping, the choice of a simple and fast simulator instead
of one using a 3D physics engine significantly speeds up the
evolutionary process.

Controller and Evolutionary Algorithm

The agent controller is composed of a continuous time recur-
rent neural network (CTRNN) of ten hidden neurons and an
arrangement of eleven input neurons and three output neu-
rons (see Figure 2 and also Beer and Gallagher, 1992). At
each simulation cycle, the activation valuesyi of input neu-
rons correspond to: the reading of theGA sensor fori = 1;
the reading of theGG sensor fori = 2; the normalised
reading of the eight camera sectorsCj with j ∈ [1, 8] for
i ∈ [3, 10]; the reading of theGSsensor fori = 11. Hid-
den neurons are fully connected. Additionally, each hid-
den neuron receives one incoming synapse from each input
neuron. Each output neuron receives one incoming synapse
from each hidden neuron. There are no direct connections
between input and output neurons. The state of each hidden
and output neuron is updated as follows:

τiẏi =















11
∑

j=1

ωjiyj +
21
∑

k=12

ωkiσ(yk + βk) − yi; i ∈ [12, 21]

21
∑

j=12

ωjiσ(yj + βj) − yi; i ∈ [22, 24];

with σ(x) =
1

1 + e−x

(1)
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In these equations,τi is the decay constant,ωij the strength
of the synaptic connection from neuronj to neuroni, βi

the bias term.τi with i ∈ [12, 24], βi with i ∈ [12, 24],
and all the network connection weightsωij are genetically
specified networks’ parameters.σ(y22) andσ(y23) linearly
scaled into [-3.2s−1, 3.2s−1] are used to set the speed of the
left and right motors (Ml, andMr). σ(y24) is used to set
the gripper aperture in the following way: ifσ(y24) > 0.75
the gripper closes; ifσ(y24) < 0.25 the gripper opens. Cell
potentials are set to 0 when the network is initialised or reset,
and circuits are integrated using the forward Euler method
with an integration step-size∆T = 0.2.

Each genotype is a vector comprising 263 real values (i.e.,
240 genes for the weights, 13 genes for the time constants,
10 genes for the biases). Initially, a random population of
vectors is generated by initialising each component of each
genotype to values randomly chosen from a uniform distri-
bution in the range [0,1]. The population contains 100 geno-
types. Generations following the first one are produced by a
combination of selection, mutation, and elitism. For each
new generation, the five highest scoring individuals from
the previous generation are chosen for breeding. The new
generations are produced by making twenty copies of each
highest scoring individual with mutations applied only to
nineteen of them. Mutation entails that a random Gaussian
offset is applied to each real-valued vector component en-
coded in the genotype, with a probability of0.25. Genotype
parameters are linearly mapped to produce CTRNN param-
eters with the following ranges: biasesβi ∈ [−10, 10] and
weightsωji ∈ [−10, 10]. Decay constants are firstly linearly
mapped onto the range[−1.0, 1.5] and then exponentially
mapped intoτi ∈ [10−1.0 101.5].

α

β

S−bot L S−bot R

Figure 3: This picture shows how thes-bots’ starting orien-
tations are defined given the orientation duplet(α, β). S-bot
L and s-botR refer to the robots whose initial orientations
in any given trial correspond to the value ofα andβ, respec-
tively.

The Task and the Fitness Function
During evolution, each genotype is translated into a robot
controller, and cloned onto each agent. At the beginning of
each trial, twos-botsare positioned in a boundless arena at a
distance randomly generated in the interval[25 cm, 30 cm],
and with predefined initial orientationsα and β (see Fig-
ure 3). Our initialisation is inspired from the initialisation
used in (Quinn, 2001). In particular, we define a set of orien-
tation duplets(α, β) as all the combinations with repetitions
from the set:

Θn =

{

2π

n
· i | i = 0, . . . , n − 1

}

, (2)

wheren is the cardinality of the set. In other words, we
systematically choose the initial orientation of boths-bots
drawing from the setΘn. The cardinality of the set of all the
different duplets—where(α, β) ≡ (β, α)—corresponds to
the total number of combinations with repetitions, and can
be obtained by the following formula:

(n + k − 1)!

k!(n − 1)!
, (3)

wherek = 2 indicates that combinations are duplets, and
n = 4 lets us define the set of possible initial orientations
Θ4 = {0◦, 90◦, 180◦, 270◦}. From this, we generate 10 dif-
ferent (α, β) duplets. Each group is evaluated 4 times at
each of the 10 starting orientation duplets for a total of 40
trials. Each trial (e) differs from the others in the initialisa-
tion of the random number generator, which influences the
robots initial distance and their orientation by determining
the amount of noise added to the orientation duplets(α, β).
During a trial, noise affects motors and sensors as well. In
particular, uniform noise is added in the range±1.25 cm for
the distance, and in the range±1.5◦ for the angle of the
object perceived by the camera. Note that, in simulation,
colours are not considered. The camera returns distances
and angles of the closest object in each sector. 10% uni-
form noise is added to the motor outputsσ(y22), σ(y23).
Uniform noise randomly chosen in the range±5◦ is also
added to the initial orientation of eachs-bot. Within a trial,
the robots life-span is 50 simulated seconds (250 simulation
cycles). A trial can be terminated earlier if the robots suc-
cessfully self-assemble in less than 50 simulated seconds,or
if they incur in 20 collisions. In each triale, each group is
rewarded by an evaluation functionFe = Ae ·Ce ·Se which
seeks to assess the ability of the two robots to get closer to
each other and to physically assemble through the gripper.

Ae is the aggregation component, computed as follows:

Ae =

{

1.0
1.0+atan( drr−16

16
)

if drr > 16 cm;

1.0 otherwise;
(4)

wheredrr is the distance between the twos-botsat the end
of the triale.
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Ce is the collision component, computed as follows:

Ce =











1.0 if nc = 0;

0.0 if nc > 20;
1.0

0.5+
√

nc

otherwise;

(5)

wherenc is the number of robot-robot collisions recorded
during triale.

Se is the self-assembly component, computed at the end
of a trial (t = T with T ∈ (0, 250]), as follows:

Se =











100.0 if GG(T ) = 1, for any robot;

1.0 +
29.0

T
P

t=0

K(t)

T
otherwise;

(6)
whereK(t) is set to 1 for each simulation cyclet in which
the sensorGSof any s-bot is active, otherwiseK(t) = 0.
Notice that, given the way in whichFe is computed, no as-
sumptions are made concerning whichs-botplays the role of
s-bot-gripper and which one the role ofs-bot-grippee. The
way in which collisions are modelled in simulation and han-
dled by the fitness function is an element that favours the
evolution of assembly strategies in which thes-bot-gripper
moves straight while approaching thes-bot-grippee. This
has been done to ease transferability to real hardware. The
fitness assigned to each genotype after the evaluation of the
robots is given byFF = 1

E

∑E

e=1 Fe, with E = 40.

Results
As stated in the Introduction, in this work we aim at design-
ing through evolutionary computation techniques dynamical
neural networks to allow a group of two homogeneouss-bots
to physically connect to each other. To pursue our objective,
we run for 10,000 generations twenty randomly seeded evo-
lutionary simulations. Although several evolutionary runs
produced genotypes that obtained the highest fitness score
(i.e.,FF = 100), the ranking based on the evolutionary per-
formances has not been used to select a suitable controller
for the experiments with real robots. The reason for this is
that during evolution, the best groups may have taken advan-
tage of favourable conditions, determined by the existence
of between-generation variation in the starting positionsand
relative orientation of the robots and other simulation pa-
rameters. Thus, the best evolved genotype from generation
5,000 to generation 10,000 of each evolutionary run has been
evaluated again on a series of 136,000 trials, obtained by
systematically varying thes-bots’ starting orientations.

In particular, we evaluated the evolved genotypes using
a wider set of 16 initial orientationsΘ16, defined by equa-
tion 2. From this set, equation 3 tells us that we can derive
136 different duplets(α, β). Each starting condition (i.e.,
orientation duplet) was tested in 1,000 trials, each time ran-
domly choosing the robots’ distance from a uniform distri-
bution of values in the range[25 cm, 30 cm]. Noise is added
to initial orientations, sensors readings and motor outputs.

The best performing genotype resulting from the set of
post-evaluations described above was decoded into an artifi-
cial neural network which was then cloned and ported onto
two reals-bots. In what follows, we provide the results of
post-evaluation tests aimed at evaluating the success rateof
the reals-botsat the self-assembly task as well as the robust-
ness of the self-assembly strategies in different setups.

Post-evaluation Tests on Real S-bots
Thes-bots’ controllers are evaluated four times on each of
36 different orientation duplets (α, β), obtained drawingα
andβ from Θ8. The cardinality of this set of duplets is given
by equation 3, withn = 8, k = 2. In each post-evaluation
experiment, successful trials are considered those by which
the robots manage to self-assemble, that is, when one robot
manages to grasp the other one. Note that, for reals-bots, the
trial’s termination criteria was changed with respect to those
employed with the simulateds-bots. We set no limit on the
maximum duration of a trial, and no limit on the number of
collisions allowed. In each trial, we let thes-botsinteract
until physically connected.

In a single case we terminated the trial before the robots
self-assembled because thes-botsended up outside the per-
ceptual range of their respective camera. This trial has been
terminated after one minute of robot-robot distance higher
than 50 cm and the trial has been considered unsuccess-
ful. As illustrated later in this Section, these new criteria al-
lowed us to observe interesting and unexpected behavioural
sequences. In fact, thes-botssporadically committed inac-
curacies during their self-assembly manoeuvres. Unexpect-
edly, the robots show to possess the required capabilities to
autonomously recover from these inaccuracies. In what fol-
lows, we provide the reader a detailed description of the per-
formance of the reals-botsin these post-evaluation trials.2

The first two tests with physical robots are referred to as test
G25 and test G30. These are tests in which thes-botslight
themselves up in green and are initialised at a distance from
each other of 25 cm and 30 cm, respectively. Thes-bots
proved to be 100% successful in both tests. That is, they
managed to self-assemble in all trials. Table 1 gives more
details about thes-bots’ performances in these trials. In par-
ticular, we notice that the number of successful trials at the
first gripping attempt is 28 and 29 trials out of 36 respec-
tively for G25 and G30 (see Table 1,2nd column). In a few
trials, thes-botsmanaged to assemble after two/three grasp-
ing attempts (see Table 1,3rd and7th column). The failed
attempts were mostly caused by inaccurate manoeuvres—
referred to as inaccuracies of typeI1—, in which a series
of maladroit actions by both robots makes impossible for
the s-bot-gripper to successfully grasp thes-bot-grippee’s
cylindrical turret. In a few other cases, the group committed

2Movies of the post-evaluation tests on reals-bots
can be found at http://iridia.ulb.ac.be/supp/
IridiaSupp2008-002/
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a different inaccuracy—referred to asI2—, in which both
robots assume the role ofs-bot-gripper. In such circum-
stances, thes-botshead towards each other until a collision
between their respective grippers occurs. Note that, in both
G25 and G30, thes-botsalways managed to recover from
the inaccuracies and end up successful.

The s-botshave to turn on their coloured LEDs in order
to perceive each other through the camera. However, a sig-
nificant advantage of our control design approach is that the
specific colour displayed has no functional role within the
neural machinery that brings forth thes-bots’ actions. In
order to empirically demonstrate that the mechanisms un-
derpinning thes-botsself-assembling strategies do not de-
pend on the specific colour displayed by the LEDs, we re-
peated a third and a fourth time the 36 post-evaluation trials,
both times by deliberately changing the colour of thes-bots’
LEDs. Thes-botsare placed at an initial distance of 30 cm
from each other, and they are evaluated with the LEDs dis-
playing blue light—this test is referred to as B30—and with
the LEDs displaying red light—this test is referred to as R30.

Thes-botsproved to be very successful both in B30 and
R30 (see Table 1). In the large majority of the trials thes-
botsmanaged to self-assemble at the first grasping attempt.
In a few trials, two or three grasping manoeuvres were re-
quired (see Table 1,3rd and7th column). A new type of
inaccuracy emerged in test R30. That is, in three trials, after
grasping, the connected structure got slightly elevated atthe

Table 1: Results of post-evaluation tests on reals-bots. G25
and G30 refer to the tests in which thes-botslight them-
selves up in green and are initialised at a distance from each
other of 25 cm and 30 cm, respectively. B30 and R30 refer
to the tests in which thes-botslight themselves up in blue
and red respectively, and are initialised at a distance of 30cm
from each other. Trials in which the assembly between thes-
botsrequires more than one gripping attempt, due to inaccu-
rate manoeuvresIi, are still considered successful.I1 refers
to a series of maladroit actions by both robots which hin-
der thes-bot-gripper from successfully grasping thes-bot-
grippee’s turret. I2 refers to those circumstances in which
both robots assume the role ofs-bot-gripper and collide at
the level of their grippers.I3 refers to those circumstances
in which, after grasping, the connected structure gets slightly
elevated at the connection point.

Test
Number of successful trials per gripping

attempt and types of inaccuracy
1st 2nd 3rd

N.◦ N.◦ I1 I2 I3 N.◦ I1 I2 I3

G25 28 7 6 1 0 1 2 0 0
G30 29 6 3 3 0 1 1 1 0
B30 26 5 3 2 0 4 8 0 0
R30 21 12 10 0 2 4 7 0 1

(a) (b) (c)

(d) (e)

Figure 4: Snapshots from a successful trial. (a) Initial con-
figuration; (b) Starting phase; (c) Role allocation phase; (d)
Gripping phase; (e) Success (grip).

connection point. We refer to this type of inaccuracy asI3.
In a single trial in test B30, thes-botsfailed to self-assemble.
In this case, thes-botsended up outside the perceptual range
of their respective cameras. This trial in which thes-bots
spent more than 1 minute without perceiving each other has
been terminated, and it was considered unsuccessful.

For each single test (i.e., G25, G30, B30, and R30), the
sequences ofs-bots’ actions are rather different from one
trial to the other. However, these different histories of in-
teraction can be succinctly described by a combination of
few distinctive phases and transitions between phases which
exhaustively “portray” the observed phenomena. Figure 4
shows some snapshots from a successful trial which repre-
sent these phases. The robots leave their respective start-
ing positions (see Figure 4a) and during the starting phase
(see Figure 4b) they tend to get closer to each other. In the
great majority of the trials, the robots move from the starting
phase to what we call the role allocation phase (RA-phase,
see Figure 4c). In this phase, eachs-bot tends to remain
on the right side of the other. They slowly move by fol-
lowing a circular trajectory corresponding to an imaginary
circle centred in between the twos-bots. Moreover, each
robot rhythmically changes its heading by turning left and
right. The RA-phase ends once one of the twos-bots—that
is, the one assuming the role of thes-bot-gripper—stops os-
cillating and heads towards the others-bot—that is, the one
assuming the role of thes-bot-grippee—which instead ori-
ents itself in order to facilitate the gripping (gripping phase,
see Figure 4d). Thes-bot-gripper approaches thes-bot-
grippee’s turret and, as soon as itsGS sensor is active, it
closes its gripper. A successful trial terminates as soon as
the twos-botsare connected (see Figure 4e). As mentioned
above, in a few trials thes-botsfailed to connect at the first
gripping attempt by committing what we called inaccura-
ciesI1 andI3. These inaccuracies seem to denote problems
in the sensory-motor coordination during grasping. Recov-
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ering fromI1 can only be accomplished by returning to a
new RA-phase, in which thes-botsre-establish again their
respective roles, and eventually self-assemble. Recovering
from I3 is accomplished by a slight backward movement of
both s-botswhich restores a stable gripping configuration.
Given thatI3 has been observed only in R30, it seems plau-
sible to attribute the origin of this inaccuracy to the effects
of the red light on the perceptual apparatus of thes-bots. In
particular, it could be that, due to the red light, thes-bot-
gripper perceives through its camera thes-bot-grippeeat a
farther distance than the actual one. Alternatively, it could
be that the red light perturbs the regular functioning of the
optical barrier and consequently the readings of theGSand
GGsensors. Both phenomena may induce thes-bot-gripper
to keep on moving towards thes-bot-grippeeup to the occur-
rence ofI3, even though the distance between the robots and
the status of the gripper of thes-bot-gripper would require
a different response.I2 seems to be caused by the effects of
thes-bots’ starting positions on their behaviour. In those tri-
als in whichI2 occurs, after a short starting phase, thes-bots
head towards each other until they collide with their grippers
without going through the RA-phase. The way in which the
robots perceive each other at starting positions seems to be
the reason why they skip the RA-phase. Without a proper
RA-phase, the robots fail to autonomously allocate between
themselves the roles required by the self-assembly task (i.e.,
s-bot-gripperands-bot-grippee), and consequently they in-
cur in I2. In order to recover fromI2, thes-botsmove away
from each other and start a new RA-phase in which roles are
eventually allocated. In the future we will further investigate
the exact cause of the inaccuracies.

As shown in Table 1, except for a single trial in test B30
in which thes-botsfailed to self-assemble, the robots proved
capable of recovering from all types of inaccuracies. This
is an interesting result because it is evidence of the robust-
ness of our controllers with respect to contingencies never
encountered during evolution. Indeed, in order to speed up
the evolutionary process, the simulation in which controllers
have been designed does not handle collisions with sufficient
accuracy. In those cases in which, after a collision, the simu-
lated robots had another chance to assemble, the agents were
simply re-positioned at a given distance from each other. In
spite of this,s-botsguided by the best evolved controllers
proved capable of engaging in successful recovering ma-
noeuvres which allowed them to eventually assemble.2

Conclusion
In this article, we have presented the results of an evolu-
tionary methodology for the design of control strategies for
self-assembling robots. To the best of our knowledge, the
control method we have proposed for the physical connec-
tion of two robots is the only existing in the literature where
the role allocation between gripper and grippee is the result
of an autonomous decision-making process between two ho-

mogeneous robots; there is no a priori injected behavioural
or morphological heterogeneity in the system. Instead, the
behavioural heterogeneity emerges through the interaction
of the robots. Moreover, the communication requirements
of our approach are reduced to the minimum; simple co-
ordination by means of the dynamical interaction between
the robots—as opposed to explicit communication of inter-
nal states—is enough to bring forth differentiation withinthe
group. We believe that reducing the assumptions on neces-
sary conditions for assembly is an important step to obtain
more adaptive and more general controllers for autonomous
self-assembly. The results of this work are a proof-of-
concept: they proved that dynamical neural networks shaped
by evolutionary computation techniques directly controlling
the robots’ actuators can provide physical robots all the re-
quired mechanisms to autonomously perform self-assembly.
Contrary to the modular or hand-coded controllers described
in Groß et al. (2006) and in O’Grady et al. (2005), the evo-
lutionary robotics approach did not require the experimenter
to make any a priori assumptions concerning the roles of
the robots during self-assembly (i.e., eithers-bot-gripperor
s-bot-grippee) or about their status (e.g., either capable of
moving or required not to move). The evolved mechanisms
proved to be robust with respect to changes in the colour
of the light displayed by the LEDs. Furthermore, we have
designed a self-assembling system that exhibits recovery ca-
pabilities that have not been selected during the evolutionary
design phase and that were not coded or foreseen by the ex-
perimenter. Such a feature in our case comes for free, while
in the case of Groß et al. (2006) a recovery mechanism had
to be designed as a specific behavioural module to be acti-
vated every time the robots failed to achieve assembly.

Our system is not as “transparent” as a hand-coded or
modular rule-based one, as we can not break its behaviour
down to a set of rules or states. Such an endeavour seems
to be very challenging and particularly difficult, especially
when the network sizes are large and/or the movement of
the robots takes place in a continuous and noisy world, such
as the real world. However, preliminary results not shown
in the paper suggest that there is an effect of the starting
configuration on the final outcome of a trial (how roles are
allocated). In short, our analysis revealed that, in those tri-
als in which the two robots have different initial perceptions
(α 6= β), the role that eachs-botassumes can be predicted
knowing the combination ofα andβ. However, it is im-
portant to notice that perceiving the other robot at a spe-
cific distance and through a given camera sector does not
inform a robot about the role it will assume during the trial.
In other words, it is this combination ofα andβ which de-
termines the roles. In those cases in which the robots start
with an identical perception (α = β), this symmetry does
not seem to hinder the robots from autonomously allocating
different roles to successfully accomplish their goal. At the
moment, it is unclear how the initial symmetry is broken.
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Perhaps, the driving forces have to be searched in the way
in which the robots mutually affect each other’s behaviour.
Perhaps, the random noise injected into the system is the
causal factor that drives the system through sequences of ac-
tions that turn out to be successful. Stochastic phenomena
may take over any causal relationship between environmen-
tal structures (i.e., how the robots perceive each other at the
beginning of a trial) and the role allocation process. Fu-
ture analyses are certainly required to see whether any in-
variants can be found among the history of interactions be-
tween the robots and what significance can be attributed to
them. We would also like to test the scalability of our sys-
tem. Can the controllers still manage to achieve assembly if
there are more than two robots involved? Some initial ex-
perimentation2 looks very promising. However, we plan to
introduce coordinated motion capabilities to the robots be-
havioural repertoire before we systematically address this is-
sue. In other words, the assembled structure of two or more
robots must be able to move coordinately, in order to ac-
tively participate in the assembly process. For example, it
could interact with other assembled structures or individual
robots by either receiving connections from them or grasp-
ing them. We will also study more complex scenarios in
which self-assembly is functional to the achievement of par-
ticular objectives that are beyond the capabilities of a single
robot.

Acknowledgements
The authors thank Francisco Santos, Roderich Groß, Marco
Montes de Oca and their colleagues at IRIDIA for stimulat-
ing discussions and feedback during the preparation of this
paper. E. Tuci and M. Dorigo acknowledge European Com-
mission support via theECAgentsproject, funded by the
Future and Emerging Technologies programme (grant IST-
1940). M. Dorigo acknowledges support from the Belgian
FNRS, of which he is a Research Director. M. Dorigo and C.
Ampatzis acknowledge support from the “ANTS” project,
an “Action de Recherche Concertée” funded by the Scien-
tific Research Directorate of the French Community of Bel-
gium. The information provided is the sole responsibility of
the authors and does not reflect the Community’s opinion.
The Community is not responsible for any use that might be
made of data appearing in this publication.

References
Anderson, C., Theraulaz, G., and Deneubourg., J. (2002). Self-

assemblages in insect societies.Insectes Sociaux, 49(2):99–
110.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural
networks for adaptive behavior.Adaptive Behavior, 1:91–
122.

Christensen, A. (2005). Efficient neuro-evolution of hole-
avoidance and phototaxis for a swarm-bot. DEA thesis
TR/IRIDIA/2005-14, Université Libre de Bruxelles, Brux-
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